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 Primary Users’ (PUs) traffic follows either deterministic patterns, as in TV transmission, or 
stochastic patterns, as in packet-switched or circuit-switched networks, where the packet 
arrival time follows the Poisson process [1]. 

 Many approaches are based on traffic pattern learning to predict the future traffic in PUs 
channels such as in [2]. 

 In [3], the authors classify the channels based on the history of collected data and apply 
constant monitoring whereas in [4] the channels are characterized by the probability of 
being idle based on statistics collected in a learning phase.  

 Both approaches address specific traffic patterns with static characteristics.  

 However, the traffic stochastic patterns cannot, in general, reflect the dynamic changes in 
the communication channels, especially when these channels are accessed by not 
registered users as the Secondary Users (Sus). The statistics of channel occupancy vary with 
time due to changes in traffic load. The SUs have to function in a completely unknown 
environment with no information about either the traffic pattern followed by the PUs or its 
specific characteristics (utilization level, frequency of state transitions, etc.) 
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 M available channels occupied by M Primary Users. 

 𝑺 = (𝒚𝒄𝟏
, 𝒚𝒄𝟐

, . . , 𝒚𝒄𝑴
) is the set of the 2M possible states of the M available channels. 

 𝑨 = (𝒂𝒄𝟏 , 𝒂𝒄𝟐 , . . , 𝒂𝒄𝑴) is the set of the possible actions an SU can take. An action represents the channel 

chosen by an SU at a specific time instance, i.e. 𝑎𝑐𝑘=1 denotes that channel 𝑐𝑘 is chosen for transmission. 

 The SUs are equipped with only one transceiver; hence, parallel transmissions are not feasible and only one 
channel can be used at a time. 

 Time is divided into periods for sensing and transmission. 

 The Q-values, kept by the SUs, characterize solely their actions, i.e. their channel choices, and are independent 

of the current state, i.e. 𝑸𝒕 𝒔𝒕, 𝒂𝒄𝒌 = 𝑸𝒕 𝒂𝒄𝒌  

 In case of a successful transmission, the received reward 𝒓𝒕(𝒔𝒕, 𝒂𝒄𝒌) is the throughput related to the specific 

transmission as quantified by the number of successfully transmitted packets divided by the transmission 
duration. 

 The goal of the SU is to set the channels in a preference order based on the probability of being vacant and the 
estimated duration of the vacant period.  

 

 

 

 The main principle of Reinforcement Learning (RL) is learning by selection and not by instruction [5].  

 The environment is represented by a discrete set of states S where decision makers/agents operate. In 
the general case, an agent receives an input from the environment, chooses an action 𝒂 from a set of 
actions 𝑨 and receives a reinforcement signal/reward 𝒓, which depends on the action taken and the 
current state s of the environment. 

 When, in addition to determining the immediate reward, the actions of a user/agent have influence on 
the subsequent environment states and future rewards, the problem is modeled as a Markov decision 
process (MDP). Similarly to the formulation of the simple RL problem, an agent at state s, 𝑠 ∈ 𝑺, can 
select an action 𝒂 from a discrete set of actions 𝑨. This selection has two consequences: first, it offers a 
reward according to a reward function 𝑹: 𝑺 × 𝑨 → 𝑹, and, second, it leads to a new environment state 
𝒔′, 𝒔′ ∈ 𝑺, following the state transition function 𝑻: 𝑺 × 𝑨 → 𝜫(𝑺), where 𝜫(𝑺) is a probability 
distribution over the set 𝑺. 
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Conclusions 

Step 1: Initialize Q-values 𝑄0 𝑠0, 𝑎𝑐𝑘 = 1 

Step 2: Evaluate 𝑃 𝑎𝑐𝑖 =
exp {𝑄(𝑠,𝑎𝑖)/𝑇𝑒𝑚𝑝}

 exp {𝑄(𝑠,𝑎𝑗)/𝑇𝑒𝑚𝑝}
𝑚
𝑗=1

, 𝑖 = 1. .𝑚 

Step 3: Set sensing order 𝑂 ∶  𝑎𝑐1 , 𝑎𝑐2 , . . , 𝑎𝑐𝑀 → ℜ based on the probability function 𝑃,  𝑗 = 1 

Step 4: Execute action  𝑎𝑐𝑘which corresponds to order  𝑜𝑗 

       If channel  𝑐𝑘 is vacant: 
                             Transmit 
                             Receive reward 𝑟𝑡(𝑠𝑡 , 𝑎𝑐𝑘)  

       else  
                             go to Step 4 with 𝑗 = 𝑗 + 1  
Step 5: Update Q-values according to the update rule and go to Step 2. 
  

Update Rules for learning procedure  

Reinforcement Learning 

 Learning with constant learning parameter (L-learning) 
When a successful transmission is completed, the Q-value of the probed channel is updated following 
the Q-learning model, i.e.:  

𝑸𝒕+𝟏 𝒔, 𝒂𝒄𝒌 = (𝟏 − 𝑳) ∙ 𝑸𝒕 𝒔, 𝒂𝒄𝒌 + 𝑳 ∙ 𝒓𝒕(𝒔, 𝒂𝒄𝒌) 

where 𝒓𝒕 𝒔, 𝒂𝒄𝒌  is the reward and 𝑳 is the learning parameter quantifying the weight assigned to the 

latest information whereas 𝟏 − 𝑳 is the weight assigned to the already accumulated experience. No 
future rewards are taken into account. 
 
 Learning with discounted learning parameter (Time-Learning) 
It constitutes a modified RL-based update rule, where the SU counts the attempts made to access a 
primary channel 𝒄𝒌; this count is denoted 𝝅𝒄𝒌. The learning rate 𝑳 is not an a priori defined 

parameter. Instead, it is related to 𝝅𝒄𝒌 via 

𝑳 = 𝟏/𝝅𝒄𝒌  

thus                           𝑸𝒕+𝟏 𝒔, 𝒂𝒄𝒌 = ((𝝅𝒄𝒌−𝟏)/𝝅𝒄𝒌) ∙ 𝑸𝒕 𝒔, 𝒂𝒄𝒌 + (𝟏/𝝅𝒄𝒌) ∙ 𝒓𝒕(𝒔, 𝒂𝒄𝒌) 

And 𝝅𝒄𝒌  is the number of times the SU has attempted to access channel 𝒄𝒌. 

Two update rules are considered for the learning procedure of Step 5:  

Q-Learning Algorithm 

 It constitutes  an online learning algorithm [6][7]. 

 It is based on the following recursive equation:  

𝑸𝒕+𝟏 𝒔𝒕, 𝒂𝒕 = 𝟏 − 𝒍𝒕 𝒔𝒕, 𝒂𝒕 𝑸𝒕 𝒔𝒕, 𝒂𝒕 + 𝒍𝒕 𝒔𝒕, 𝒂𝒕 𝒓𝒕 + 𝜸𝒎𝒂𝒙
𝒂𝒕+𝟏

𝑸𝒕 𝒔𝒕+𝟏, 𝒂𝒕+𝟏  

       where 𝒔′and 𝒂′denote the state and action taken at the following time instance,𝒍𝒕 𝒔𝒕, 𝒂𝒕  is the learning 
parameter 𝟎 ≤ 𝒍𝒕 𝒔𝒕, 𝒂𝒕 ≤ 𝟏 , 𝒓𝒕 is the reward and 𝜸 is a discount factor to account for the contribution of 
future reinforcements (𝟎 ≤ 𝜸 ≤ 𝟏). 

 RL algorithms are characterized by two main components [8]; the update rule which designates how an 
agent imports the accumulated experience into the update of the Q-values of the actions and the 
learning policy which specifies the selection of the action at each time instance based on the Q-values. 

 In general, 𝑸𝒕+𝟏 𝒔𝒕, 𝒂𝒕 → 𝔼 𝑹𝒕|𝒂𝒕 = 𝒂  with probability 1 if the following conditions hold: 

                                     𝒍𝒕 𝒔𝒕, 𝒂𝒕 𝑰 𝒂𝒕 = 𝒂 = ∞  ∞
𝒕=𝟏  and     𝒍𝒕 𝒔𝒕, 𝒂𝒕

𝟐 = ∞  ∞
𝒕=𝟏  

        where 𝐼 𝑎𝑡 = 𝑎  is an indicator function taking value 1, if 𝑎𝑡 = 𝑎 and 0 otherwise. 

 In the proposed scheme the Boltzmann strategy is employed for the selection of a future action, 
i.e. which channel to access.  

𝑷 𝒂𝒄𝒌 =
𝐞𝐱𝐩 {𝑸(𝒂𝒄𝒌  )/𝑻𝒆𝒎𝒑}

 𝐞𝐱𝐩 {𝑸(𝒂𝒄𝒋  )/𝑻𝒆𝒎𝒑}
𝒎
𝒋=𝟏

 

 Temp is the temperature parameter which is related to the variance of the Gumbel errors in a Logit 
discrete choice model. High Temp values favor exploration by reducing the importance of the 
variations of the Q values and low Temp values favor exploitation. 

 

 Both L-learning and Time-Learning offer high exploitation of the available opportunities. 
 The ratio of transmits/switches is significantly higher than the case of no learning. 
 The suggested algorithm works with any traffic pattern of Primary Users. 
 Awareness is achieved based only on information collected by the SU. 

 

Proposed Algorithm 

 3 available channels of different mean duration of vacant periods 
 Mean duration of vacant periods {1s, 0.6s, 0.4s}, {0.6s, 1s, 0.4s},{1s, 0.6s, 0.4s}.  
 Evolution of Q-values in time: 

 

 10 available channels of same mean occupancy and different mean duration of vacant periods 
 Mean duration of busy periods {0.2-2s}. 
 Mean duration of vacant periods {0.2-17s} 
 Metric: Transmissions over switches 
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